- Gradient of a line passing through two points
- Limits
- Differentiation from first principles
- Differentiating expressions of the form \(kx^n\) with respect to \(x\)
**The gradient at a point on a curve**- Tangents and normals

# Part 5: The gradient at a point on a curve

In part 4, we saw how to find the derivative of any function of \(x\) whose terms are of the form \(kx^n\). To find the gradient at a particular point on the curve \(y=\text{f}(x)\), we simply substitute the \(x\)-coordinate of that point into the derivative. Use this applet to see step-by=step examples and practise questions for yourself.

<