G16c Area of a triangle © BossMaths

Spot the links...

Find the area of each of the following triangles:
(1)

$$
\frac{9 \times 4}{2}=18 \mathrm{~cm}^{2}
$$

(3)

$$
\frac{9 \times 4}{2}=18 \mathrm{~cm}^{2}
$$

(5)

(2)

$$
\frac{9 \times 4}{2}=18 \mathrm{~cm}^{2}
$$

(4)

$$
\frac{9 \times 5}{2}=22.5 \mathrm{~cm}^{2}
$$

(6)

$$
\frac{5 \times 9}{2}=22.5 \mathrm{~cm}^{2}
$$

G16c Area of a triangle © BossMaths

Alpha Exercise

Find the area of each of the following triangles:
(1)

$$
\frac{4 \times 4}{2}=8 \mathrm{~cm}^{2}
$$

(3)

$$
\frac{8 \times 5}{2}=20 \mathrm{~cm}^{2}
$$

(5)

$$
\frac{12 \times 5}{2}=30 \mathrm{~cm}^{2}
$$

(2)

(4)

$$
\frac{10 \times 7}{2}=35 \mathrm{~cm}^{2}
$$

(6)

$$
\frac{6 \times 7}{2}=21 \mathrm{~cm}^{2}
$$

G16c Area of a triangle © BossMaths

Find the area of each of the following triangles:
(1)

$$
\frac{6 \times 7}{2}=21 \mathrm{~m}^{2}
$$

(2)

$$
\frac{12 \times 7}{2}=42 \mathrm{~cm}^{2}
$$

(3)

$$
\frac{5 \times 6}{2}=15 \mathrm{~cm}^{2}
$$

(4)

$$
\frac{19 \times 11}{2}=104.5 \mathrm{~cm}^{2}
$$

G16c Area of a triangle © BossMaths

Find the area of each of the following triangles:
(1)

$$
\frac{5 \times 5}{2}=12.5 \mathrm{~cm}^{2}
$$

(2)

$$
\frac{32 \times 37}{2}=592 \mathrm{~mm}^{2}
$$

(3)

$$
\frac{4.5 \times 6}{2}=13.5 \mathrm{~m}^{2}
$$

(4)

$$
\frac{4.1 \times 8.7}{2}=17.835 \mathrm{~cm}^{2}
$$

Explain the mistake

Emma says that the missing length is 5 cm because $5 \times 10=50 \mathrm{~cm}^{2}$.
Emma is wrong.

Explain why.

Emma seems to have forgotten that the area of a triangle is half the base multiplied by the height. The correct height is 10 cm .

Exam-style question 1

Four identical triangles are tiled as shown to form one large triangle with a base of 12 metres, and a height of 10 metres, as shown in the diagram.

Work out the area of one tile.

Alternatively:

$$
\frac{6 \times 5}{2}=15 m^{2}
$$

$$
\begin{aligned}
& \text { Area of } 4 \text { tiles }= \\
& \frac{12 \times 10}{2}=60 \mathrm{~m}^{2}
\end{aligned}
$$

Area of 1 file $=$

$$
\frac{60}{4}=\frac{15 m^{2}}{}
$$

Exam-style question 2

Tyler draws a triangle whose base is equal to its perpendicular height.
The area of the triangle is $18 \mathrm{~cm}^{2}$, and one of the sides is 9 cm long.
Find the base and height of the triangle.

$$
\text { Area }=18 \mathrm{~cm}^{2}
$$

Irrelevant

$$
\begin{aligned}
\text { Since base } & =\text { height }, \\
\text { base } & =\text { height }=\sqrt{36}=6 \mathrm{~cm} .
\end{aligned}
$$

Exam-style question 3

Here is a grid made up of equilateral triangles. Each small triangle has an area of $5 \mathrm{~cm}^{2}$.

What is the area of the shaded triangle?
The triangle is half of a parallelogram made up of 12 small triangles, each with an area of $5 \mathrm{~cm}^{2}$.

$$
A_{\text {real }}=\frac{5 \times 12}{2}=30 \mathrm{~cm}^{2}
$$

Challenge
ABCD is a parallelogram.
The point P is the point on $A B$ such that the ratio of $\mathrm{AP}: \mathrm{PB}$ is $2: 1$.

PC and BD intersect at X .
Triangles XCD and PBX are shaded.
Show that the fraction of the parallelogram that is shaded is $\frac{5}{12}$.

Let $A B C D$ have base b and height h as shown. Then its area is bl.
Note $\triangle X C D$ and $\triangle X B P$ are similar, since

- $\angle P \times B=\angle C X D$ (vertically opposite)
- $\angle P B X=\angle X D C$ (alternate)
- $\angle B P X=\angle X C D \quad$ (alternate)

Now, $P B=\frac{1}{3} C D=\frac{1}{3} b$ i.e. $\triangle X C D$ is an enlargement of $\triangle X B P$ by scale factor 3 .
Since the heights of $\triangle X C D$ and $\triangle X B P$ must sum to h, we must have heights of $\frac{3}{4} h$ and $\frac{1}{4} h$ respectively.

$$
\text { Hence shaded area } \begin{aligned}
& =\text { area of } \triangle \times C D+\text { area of } \triangle \times B P \\
& =\frac{1}{2} \times b \times \frac{3}{4} h+\frac{1}{2} \times \frac{1}{3} b \times \frac{1}{4} h \\
& =\frac{3}{8} b h+\frac{1}{24} b h=\frac{10}{24} b h=\frac{5}{12} b h
\end{aligned}
$$

ie. $\frac{5}{12}$ of the area of $A B C D$.

