Solving equations

Higher worksheet

Solve the following equations

1) $2 x+5 y=31$
$-9 x+5 y=53$
2) $4 x+9 y=-7$
$8 x-9 y=-2$
3) $4 x-6 y=28$
$2 x+4 y=-42$

Solving equations
Higher worksheet
4) $-2 x+y=-11$
$-7 x+4 y=-40$
5) $2 x+6 y=-46$
$-3 x+19 y=-71$
6) $y=6 x-12$
$y=9 x+3$

Solving equations

Higher worksheet
7) $y=7 x+11$
$4 x+8 y=148$
8) $7 x-9 y=-419$
$y=8 x-4$

Solving equations
Higher worksheet
9) $y=x^{2}-13 x+42$
$y=3 x-6$
10) $(x-4)^{2}+(y-14)^{2}=50$
$y=x+10$

Solving equations

Higher worksheet

Solve the following equations

1) $2 x+5 y=31$
$-9 x+5 y=53$
[1]
$9 x-5 y=-53$ (multiplying [2] by -1)
[3]
$11 x=-22$ (adding [1] and [3] together)
[4]
$x=-2$ (dividing each side of [4] by 11)
$-4+5 y=31$ (substituting [5] into [1])
[5]
$5 y=35$ (adding 4 to each side of [6])
[6]
$y=7$ (dividing each side of [7] by 5)
So $x=-2, y=7 \quad$ (from [5] and [8])
2) $4 x+9 y=-7$
$8 x-9 y=-2$
$12 x=-9$ (adding [1] and [2] together) [3]
$x=-\frac{3}{4}$ (dividing each side of [3] by 12)
$-3+9 y=-7$ (substituting [4] into [1]) [5]
$9 y=-4$ (adding 3 to each side of [5])
$y=-\frac{4}{9}$ (dividing each side of [6] by 9$)$
So $x=-\frac{3}{4}, y=-\frac{4}{9}$ (from [4] and [7])
3) $4 x-6 y=28$
$2 x+4 y=-42$
$-4 x-8 y=84$ (multiplying [2] by -2)
[3]
$-14 y=112$ (adding [1] and [3] together)
[4]
$y=-8$ (dividing each side of [4] by -14)
$2 x+(-32)=-42$ (substituting [5] into [2])
$2 x-32=-42($ rewriting [6])
$2 x=-10$ (adding 32 to each side of [7])
$x=-5$ (dividing each side of [8] by 2)
So $x=-5, y=-8 \quad$ (from [9] and [5])

Solving equations

Higher worksheet

4) $\begin{aligned} & -2 x+y=-11 \\ & -7 x+4 y=-40\end{aligned}$
$8 x-4 y=44$ (multiplying [1] by -4) $\quad[3]$
$x=4$ (adding [2] and [3] together)
$-8+y=-11$ (substituting [4] into [1])
$y=-3($ adding 8 to each side of [6])
So $x=4, y=-3 \quad$ (from [4] and [8])
5) $2 x+6 y=-46$
$-3 x+19 y=-71$
$6 x+18 y=-138$ (multiplying [1] by 3)
$-6 x+38 y=-142$ (multiplying [2] by 2)
$56 y=-280$ (adding [3] and [4] together)
[5]
$y=-5$ (dividing each side of [5] by 56)
[6]
$2 x+(-30)=-46($ substituting [6] into [1])
[7]
$2 x-30=-46$ (rewriting [7])
[8]
$2 x=-16$ (adding 30 to each side of [8]) [9]
$x=-8$ (dividing each side of [9] by 2)
So $x=-8, y=-5 \quad$ (from [10] and [6])
6) $y=6 x-12$
$y=9 x+3$
$6 x-12=9 x+3$ (substituting [1] into [2])
[1]
$-15=3 x$ (adding $-6 x-3$ to each side of [3])
[3]
$-5=x$ (dividing each side of [4] by 3)
$y=-30-12=-42$ (substituting [5] into [1])
So $x=-5, y=-42$ (from [5] and [6])

Solving equations

Higher worksheet

7) $y=7 x+11$
$4 x+8 y=148$
$4 x+8(7 x+11)=148$ (substituting [1] into [2])
[3]
$60 x+88=148$ (expanding brackets and simplifying in [3])
$60 x=60$ (subtracting 88 from each side of [4])
$x=1$ (dividing each side of [5] by 60)
$y=7+11=18$ (substituting [6] into [1])
So $x=1, y=18 \quad$ (from [6] and [7])
8) $7 x-9 y=-419$
$y=8 x-4$
$7 x-9(8 x-4)=-419($ substituting [2] into [1]) $\quad[3]$
$-65 x+36=-419$ (expanding brackets and simplifying in [3]) [4]
$-65 x=-455$ (subtracting 36 from each side of [4]) [5]
$x=7$ (dividing each side of [5] by -65) [6]
$y=56-4=52$ (substituting [6] into [2]) [7]
So $x=7, y=52 \quad$ (from [6] and [7]) [8]

Solving equations

Higher worksheet

9) $y=x^{2}-13 x+42$
$y=3 x-6$ [2]
$x^{2}-13 x+42=3 x-6$ (substituting [1] into [2])
[3]
$x^{2}-16 x+48=0$ (adding $-3 x+6$ to each side of [3])
[4]
$(x-12)(x-4)=0$ (factorising the left-hand side of [4])
$x=12, x=4$ (Solving [5])
If $x=12, y=36-6=30$ (substituting $x=12$ into [2])
If $x=4, y=12-6=6$ (substituting $x=4$ into [2])
So $x=12, y=30 \quad$ (from [6] and [7])
So $x=4, y=6 \quad$ (from [6] and [8])
10) $(x-4)^{2}+(y-14)^{2}=50$
$y=x+10$
$(x-4)^{2}+(x+10-14)^{2}=50$ (substituting [2] into [1])
$(x-4)^{2}+(x-4)^{2}=50$ (simplifying in [3])
[4]
$2 x^{2}-16 x+32=50$ (expanding and simplifying the left side of [4]) [5]
$x^{2}-8 x+16=25$ (dividing each side of [5] by 2)
$x^{2}-8 x-9=0 \quad$ (subtracting 25 from each side of [6]) [7]
$(x-9)(x+1)=0$ (factorising the left-hand side of $[7])$
$x=9, x=-1$ (Solving [8])
If $x=9, y=9+10=19$ (substituting $x=9$ into [2])
If $x=-1, y=-1+10=9$ (substituting $x=-1$ into [2])
So $x=9, y=19 \quad$ (from [9] and [10])
So $x=-1, y=9 \quad$ (from [9] and [11])
