AQA Paper 1H Practice Booklet
20 practice questions based on the advance information
copies of this booklet, as well as hints \& solutions, are available at bossmaths.com/advanceinfo

Question 1
Which is greater, $\frac{4}{3}$ of 87 g or 14% of 800 g ?

$$
\times 4\binom{\frac{1}{3} \text { of } 87=29}{\frac{4}{3} \text { of } 87=116} \times 4 \quad \times 14\binom{1 \% \text { of } 800=\frac{1}{100} \text { of } 800=8}{14 \% \text { of } 800=112} \times 14
$$

So $\frac{4}{3}$ of 87 g is greater

Question 2
Work out $\left((0.35 \times 1.4)^{2}\right)^{\frac{1}{4}}$ writing your answer as a decimal.

$$
0.35 \times 1.4=0.35 \times 2 \times 0.7=0.7 \times 0.7=0.7^{2}
$$

so $\left((0.35 \times 1.4)^{2}\right)^{\frac{1}{4}}=\left(\left(0.7^{2}\right)^{2}\right)^{\frac{1}{4}}=\left(0.7^{4}\right)^{\frac{1}{4}}$

$$
=0.7
$$

Question 3

Write down the three inequalities that define the shaded region.
The inequalities are

$$
\begin{aligned}
& x>-1 \\
& y<1 \\
& y \geqslant x-1
\end{aligned}
$$

Question 4
Simplify each of these expressions as far as possible.
(a) $5 \sqrt{44}-8 \sqrt{11}=5 \sqrt{4} \sqrt{11}-8 \sqrt{11}$

$$
=5 \times 2 \sqrt{11}-8 \sqrt{11}=10 \sqrt{11}-8 \sqrt{11}=2 \sqrt{11}
$$

(b) $\sqrt{34} \times \sqrt{17}$

$$
\begin{aligned}
& =\sqrt{2} \times \sqrt{17} \times \sqrt{17}=\sqrt{2} \times(\sqrt{17} \times \sqrt{17}) \\
& =\sqrt{2} \times 17=17 \sqrt{2}
\end{aligned}
$$

(c)

$$
\begin{aligned}
-7 x-3(9-2 x) & \equiv-7 x+-3(9-2 x) \\
& \equiv-7 x-27+6 x \\
& \equiv-x-27
\end{aligned}
$$

Many students go wrong here!

Question 5
Simplify fully $\frac{2 x^{2}+9 x-5}{(3 x+4)-(x+5)}$

$$
\equiv \frac{(2 x-1)(x+5)}{2 x-1} \equiv x+5
$$

Question 6
Work out $9.5 \times 10^{8}+60,200,000$, writing your answer in standard form.

$$
\begin{aligned}
& 9.5 \times 10^{8}+6.02 \times 10^{7} \\
= & 9.5 \times 10^{8}+0.602 \times 10^{8} \\
= & 10.102 \times 10^{8} \\
= & 1.0102 \times 10^{9}
\end{aligned}
$$

Question 7
The first three terms of an arithmetic sequence are:
$\frac{x-5}{2}, x-5,2 x-21 \quad$ constant difference between consecutive terms
Find the value of x.

$$
\begin{aligned}
(x-5)-\frac{x-5}{2} & =2 x-21-(x-5) \\
\frac{x-5}{2} & =x-16 \\
x-5 & =2 x-32 \\
27 & =x
\end{aligned}
$$

Check by substituting $x=27$ into the terms to get $11,22,33$ These do form the start of an arithmetic sequence

Question 8
The diagram shows the lengths, in centimetres, of two sides of a right-angled triangle.
Find the value of p.

$$
4 x+2
$$

$$
\begin{aligned}
\sin (p) & =\frac{4 x+2}{8 x+4}=\frac{1}{2} \\
p & =30
\end{aligned}
$$

Question 9
How many faces does an octagonal prism have?
10 faces

Question 10
(a) Write $0.10 \dot{3}$ as fraction in its simplest form.

Let $x=$
0. 1030303 ...

So $x=\frac{10.2}{99}=\frac{102}{990}$
Then $100 x=10.3030303 \ldots$
Subtract $x=0.1030303 \ldots$

$$
=\frac{34}{330}=\frac{17}{165}
$$

to get $99 x=10.2$
(b) A biased coin has a probability of $0.1 \dot{0} \dot{3}$ of landing tails side up. If the coin is flipped 330 times, how many times would you expect the coin to land tails side up?
We would expect the can to come up heals $\frac{17}{165}$ or $\frac{34}{330}$ of the time. $\frac{34}{330}$ of 330 is 34 .

Question 11

The graph shows the distance covered by a cyclist for 6 seconds.

Here are four sketches of speed-time graphs. One of these sketches represents the cyclist's speed during the six-second period shown on the distance-time graph above. Circle this sketch.

Time (s)

Time (s)

Speed
(m/s) $\underbrace{}_{\text {Time (s) }}$

Question 12

Here are sketches of four triangles. The sketches are not drawn to scale. Exactly two of the four triangles are congruent to each other. Circle these two triangles.

Question 13

This graph shows the amount charged by a plumber for up to 4 hours of work.

Give an interpretation of the gradient of this graph.

$$
\begin{gathered}
\text { Gradient }=\frac{E 120}{3 \text { hows }} \\
=f 40 / \mathrm{hr}
\end{gathered}
$$

The gradient represents the amount charged for each extra hour of work (after an initial fixed charge of E6O.)

Note that this is the intercept on the vertical axis.

Question 14
A group of 40 people are asked whether like tennis, cycling, both, or neither.
The probability that a randomly chosen individual likes tennis is $\left.\frac{1}{5}.\right\} 8$ people The probability that a randomly chosen individual likes cycling is $\frac{3}{8}$. $\}$ IS people
Of the 40 people, 19 said they didn't like either tennis or cycling. $\}$ The missing numbers Fill in the three blanks in this Venn diagram.
 must add up to

$$
40-19=21 .
$$

Since $8+15=23$, there must be 2 people that like both tennis and cycling.

Question 15

Here are the equations of six curves.
A. $y=x^{2}-2 x+1$
B. $y=5^{x}$
C. $y=\frac{1}{x}$
D. $y=x^{2}-8$
E. $y=3^{-x}$
F. $y=\sin x$

Sketches of three of the above curves are shown below.

Match each graph to its equation from the list above.

Question 16

This cumulative frequency graph shows information about the heights, in cm, of rowers at a rowing club.

Work out an estimate for the number of these rowers with a height greater than 186 cm .
There are 76 rowers in total.
We estimate that 55 are up to 186 cm tall. So $76-55=21$ rowers are greater than

186 cm tall.

Question 17
$O A D$ and $O B C$ are sectors of circles with centre O.
The points O, A, and B lie on a straight line. Similarly, the points O, D, and C lie on a straight line.
$O B$ has length 13 cm and $O D$ has length 12 cm .

Find, in terms of π, the shaded area $A B C D$ in cm^{2}.
Area of setae $O B C=\frac{72}{360} \times \pi \times 13^{2}=\frac{169}{5} \pi$
Area of sector $O A D=\frac{72}{36} \times \pi \times 12^{2}=\frac{144}{5} \pi$
Shaded area $A B C D=\frac{169}{5} \pi-\frac{144}{5} \pi$

$$
=\frac{25}{5} \pi=5 \pi
$$

Question 18
(a) Make p the subject of the formula $m=\frac{8(q+3 p)}{p}$

Multiply both sides by p

$$
\begin{aligned}
m p & =8 q+24 p \\
m p-24 p & =8 q \\
p(m-24) & =8 q \\
p & =\frac{8 q}{m-24}
\end{aligned}
$$

Subtract 24 p from both sides

Factorise out p

Divide both sides by $(m-24)$
(b) Work out the value of p when $q=\frac{3}{4}$ and $m=\frac{53}{2}$.

Write your answer as a fraction in its simplest form.
Substitute $q=\frac{3}{4}$ and $m=\frac{53}{2}$ into the above:

$$
\begin{aligned}
p & =\frac{8\left(\frac{3}{4}\right)}{\frac{53}{2}-24}=\frac{6}{\frac{53}{2}-\frac{48}{2}}=\frac{6}{\left(\frac{5}{2}\right)} \\
& =6 \div \frac{5}{2}=6 \times \frac{2}{5}=\frac{12}{5}
\end{aligned}
$$

Question 19

The diagram shows the points, X, Y, and Z.

The vector $\overrightarrow{X Z}=-\mathbf{a}-5 \mathbf{b}$
The vector $\overrightarrow{Y Z}=-4 \mathbf{a}-3 \mathbf{b}$
Q is the midpoint of $X Y$.
Find the vector $\overrightarrow{Z Q}$ in terms of \mathbf{a} and \mathbf{b}.

$=3 a-2 b$

$=a+5 b+\frac{1}{2}(3 \underline{a}-2 \underline{b})$

$=\underline{a}+5 \underline{b}+\frac{3}{2} \underline{a}-\underline{b}$
$=\frac{5}{2} \underline{a}+4 \underline{b}$

Question 20
The region R contains the set of points within triangle $A B C$ that are closer to A than B and closer to $B C$ than $A B$.

Construct and shade in the region R.

