AQA Paper 1H Practice Booklet
20 practice questions based on the advance information
Copies of this booklet, as well as hints \& solutions, are available at bossmaths.com/advanceinfo

Question 1
Which is greater, $\frac{4}{3}$ of 87 g or 14% of 800 g ?

$$
\frac{1}{3} \text { of } 87=29 \quad 1 \% \text { of } 800=\frac{1}{100} \text { of } 800=8
$$

so $\frac{4}{3}$ of $87=$ \square so 14% of $800=$ \square

Then state which is greater.

Question 2
Work out $\left((0.35 \times 1.4)^{2}\right)^{\frac{1}{4}}$ writing your answer as a decimal. Remember, $\left(a^{m}\right)^{n} \equiv a^{m n}$

Question 3
The x-coordinate of every point on this

Write down the three inequalities that define the shaded region.
Remember, dashed lines indicate strict inequalities ie. $>$ or $<$.

Solid lines indicate non-strict inequalities ie. \geqslant or \leqslant

Question 4
Simplify each of these expressions as far as possible.

$$
\sqrt{a b}=\sqrt{a} \sqrt{b}
$$

(a) $5 \sqrt{44}-8 \sqrt{11}=5 \sqrt{4} \sqrt{11}-8 \sqrt{11}$

$$
=\ldots
$$

(b) $\sqrt{34} \times \sqrt{17}$

$$
=\sqrt{2} \times \sqrt{17} \times \sqrt{17}=\sqrt{2} \times(\sqrt{17} \times \sqrt{17})
$$

$$
=\ldots
$$

(c) $-7 x-3(9-2 x) \equiv-7 x+-3(9-2 x)$

$$
\equiv \quad \ldots
$$

Question 5
Simplify fully $\frac{2 x^{2}+9 x-5}{(3 x+4)-(x+5)}$
Factorise
R Simplify by collecting like terms.
Take care with the brackets
Once you've done this, you should see the numerator and denominator share a common factor.

Question 6
Work out $9.5 \times 10^{8}+60,200,000$, writing your answer in standard form.

$$
\begin{aligned}
& 9.5 \times 10^{8}+6.02 \times 10^{7} \\
= & 9.5 \times 10^{8}+0.602 \times 10^{8} \\
= & \ldots
\end{aligned}
$$

Question 7
The first three terms of an arithmetic sequence are:

$$
\frac{x-5}{2}, x-5,2 x-21
$$ so:

Find the value of x.

$$
\begin{aligned}
& \text { 2d term }- \text { Isterm }=3 \text { ed term }-2 \text { de d term } \\
& (x-5)-\frac{x-5}{2}=2 x-21-(x-5)
\end{aligned}
$$

Now solve this equation to find x.

Question 8
The diagram shows the lengths, in centimetres, of two sides of a right-angled triangle.
Find the value of p.

$$
\sin (P)=\frac{4 x+2}{8 x+4} 5
$$

what does this simplify to?

Question 9
How many faces does an octagonal prism have?
2 octagonal faces
$\frac{+\quad \text { rect }}{\text { Question } 10}$
(a) Write $0.1 \dot{0} \dot{3}$ as fraction in its simplest form.

So $x=\ldots$
Let $x=0.1030303 \ldots$
Then $100 x=10.3030303 \ldots$
Subtract $x=0.1030303 \ldots$ to get $99 x=$ \qquad
(b) A biased coin has a probability of $0.10 \dot{3}$ of landing tails side up. If the coin is flipped 330 times, how many times would you expect the coin to land tails side up?
If the coin instead had a probability of $\frac{1}{3}$ of coming up tails, we would expect it to happen $\frac{1}{3}$ of 330 $=110$ times. Follow the same logic, but instead of $\frac{1}{3}$, use the fraction you worked out in (a).

Question 11

The graph shows the distance covered by a cyclist for 6 seconds.

Here are four sketches of speed-time graphs. One of these sketches represents the cyclist's speed during the six-second period shown on the distance-time graph above. Circle this sketch.

Time (s)

Time (s)

Time (s)

Time (s)

Question 12

Here are sketches of four triangles. The sketches are not drawn to scale. Exactly two of the four triangles are congruent to each other. Circle these two triangles.

Question 13

This graph shows the amount charged by a plumber for up to 4 hours of work.
Give an interpretation of the gradient of this graph.

$$
\begin{aligned}
& \text { Gradient }=\frac{E 120}{3 \text { hows }} \\
& =f 40 / \mathrm{hr}
\end{aligned}
$$

The gradient represents

Question 14

A group of 40 people are asked whether like tennis, cycling, both, or neither.
The probability that a randomly chosen individual likes tennis is $\frac{1}{5}$ \} 8
The probability that a randomly chosen individual likes cycling is $\frac{3}{8}$. \} IS people
Of the 40 people, 19 said they didn't like either tennis or cycling. $\}$
Fill in the three blanks in this Venn diagram.

$$
40-19=21
$$

Question 15

Here are the equations of six curves.
A. $y=x^{2}-2 x+1$
B. $y=5^{x}$
C. $y=\frac{1}{x}$
D. $y=x^{2}-8$
E. $y=3^{-x}$
F. $y=\sin x$

Sketches of three of the above curves are shown below.

Match each graph to its equation from the list above.

$y=a x^{2}+b x+c$ is a V-shaped curve when a is positive.

$$
A_{s} x \rightarrow \infty, \frac{1}{x} \rightarrow 0
$$

Question 16

This cumulative frequency graph shows information about the heights, in cm, of rowers at a rowing club.

Work out an estimate for the number of these rowers with a height greater than 186 cm .
There are rowers in total. We estimate that are up to 186 cm tall. So rowers are greater than 186 cm tall.

Question 17
$O A D$ and $O B C$ are sectors of circles with centre O.
The points O, A, and B lie on a straight line. Similarly, the points O, D, and C lie on a straight line.
$O B$ has length 13 cm and $O D$ has length 12 cm .

Find, in terms of π, the shaded area $A B C D$ in cm^{2}.
Area of settee $O B C=\frac{72}{360} \times \pi \times 13^{2}=\frac{169}{5} \pi$
Area of sector $O A D=\frac{72}{360} \times \pi \times 12^{2}=$ \square
Shaded area $A B C D=\frac{169}{5} \pi-\square$
$=$

Question 18
(a) Make p the subject of the formula $m=\frac{8(q+3 p)}{p}$

Multiply both sides by p

$$
\begin{aligned}
& m p=8 q+24 p \\
& m p-24 p=8 q
\end{aligned}
$$

Subtract $24 p$ from both sides

Factorise out p

$$
p(\ldots)=8 q
$$

(b) Work out the value of p when $q=\frac{3}{4}$ and $m=\frac{53}{2}$.

Write your answer as a fraction in its simplest form.
Substitute $q=\frac{3}{4}$ and $m=\frac{53}{2}$ into your formula from (a)

Question 19

The diagram shows the points, X, Y, and Z.
The vector $\overrightarrow{X Z}=-\mathbf{a}-5 \mathbf{b}$
The vector $\overrightarrow{Y Z}=-4 \mathbf{a}-3 \mathbf{b}$
Q is the midpoint of $X Y$.
Find the vector $\overrightarrow{Z Q}$ in terms of \mathbf{a} and \mathbf{b}.

$\overrightarrow{Z Q}=\overrightarrow{Z x}+\overrightarrow{X Q}$
$=\overrightarrow{z x}+\frac{1}{2} \overrightarrow{x y}$

$\int \vec{x}=\frac{1}{2} \times$
$=0+50+\frac{1}{2}$
$=$

Question 20
The region R contains the set of points within triangle $A B C$ that are closer to A than B and closer to $B C$ than $A B$.

Construct and shade in the region R.
(1) Perpendicular bisector of AB

