Edexcel Paper 2H Practice Booklet
20 practice questions based on the advance information
Copies of this booklet, as well as hints \& solutions, are available at bossmaths.com/advanceinfo

Question 1
Calculate $\frac{707+7007}{7 \times\left(600-7^{2}\right)}-7+5$
Entering this into a calculator, we see

$$
\frac{707+7007}{7 \times\left(600-7^{2}\right)}-7+5=0
$$

Question 2
$\left(x^{-\frac{8}{3}}\right)^{\frac{5}{4}} \equiv \frac{1}{\sqrt[3]{x^{k}}}$, where $k$ is some constant. Find the value of $k$.

$$
\left(x^{-\frac{8}{3}}\right)^{\frac{5}{4}} \equiv x^{\frac{-40}{12}} \equiv \frac{1}{\sqrt[3]{x^{10}}}
$$

$$
\text { So } k=10
$$

Question 3
(a) $y$ is directly proportional to $x^{2}$. When $x=11, y=605$. Find the value of $x$ when $y=720$.

$$
\begin{array}{lll}
x & x^{2} & y \\
11 & 121 \underset{\div 5}{\leftarrow} 605 \\
12 & 144 \underset{\div 5}{\longleftarrow} 720
\end{array} \quad \text { When } y=720, x=12
$$

(b) $p$ is inversely proportional to $q$. When $p=14.5, q=2$. Find the value of $q$ when $p=580$.

$$
p q=k=14.5 \times 2=29
$$

Solving $580 q=29$

$$
q=\frac{29}{580}=\frac{1}{20} \text { or } 0.05
$$

Question 4
(a) Factorise $17 x^{2}+2 x-19 \quad(17 x+19)(x-1)$
(b) Expand and simplify $(8 t+3)(8 t-3)-(5 t+1)(5 t-9)$

$$
\begin{aligned}
& \left(64 t^{2}-9\right)-\left(25 t^{2}-40 t-9\right) \\
& \equiv 39 t^{2}+40 t
\end{aligned}
$$

Question 5
The point $M$ lies on the line segment $A B$
$A B: A M$ is $3: 1$
$A$ has coordinates $(-2,3)$ and $B$ has coordinates $(13,39)$.
Find the coordinates of $M$.

$M$ is $\frac{1}{3}$ of the way from $A$ to $B$
So from $A$, we go 5 right add 12 up to get to $M$.


Question 6
Here are the equations of four lines.
(a) Circle the equations of the two parallel lines.

Parallel lines have the
same gradient

$$
\begin{array}{llll}
y=-2 x+4 & y=\frac{1}{2} x+4 & -2 x+y+8=0 & 3 x-6 y-7=0 \\
\text { gradient } & \text { gradient } & y=2 x-8 & 3 x-7=6 y \\
=-2 & =\frac{1}{2} & \text { gradient }=2 & \frac{1}{2} x-\frac{7}{6}=y \\
& & & \\
& & \text { gradient }=\frac{1}{2}
\end{array}
$$

(b) Find the equation of the line that passes through the point $(-8,-5)$ and is parallel to those you circled in (a).

$$
\begin{aligned}
& y=\frac{1}{2} x+c \\
& y=-1 \\
& \quad \xrightarrow{(-8,-5)^{8}} \cdot \frac{(0,-1)^{8}}{4} x
\end{aligned}
$$

Question 7
A rectangle's length is double its width. The perimeter of this rectangle is 330 cm . Work the area of the rectangle, giving your answer in $\mathrm{m}^{2}$.


$$
\begin{aligned}
& \text { Say width }=x \mathrm{~cm} \text {. Then length }=2 x \mathrm{~cm} . \\
& \text { Perimeter }=6 x=330 \\
& \quad \Rightarrow x=\frac{330}{6}=55
\end{aligned}
$$

So width $=55 \mathrm{~cm}$ and length $=110 \mathrm{~cm}$

$$
\begin{aligned}
\text { Area }=55 \times 110 & =6050 \mathrm{~cm}^{2} \\
& =\frac{6050}{10,5000} \mathrm{~m}^{2}
\end{aligned}
$$



Question 8
A force of $x$ newtons initially acts on an area of $15 \mathrm{~cm}^{2}$.
The force is increased by $20 \%$ while the area is reduced until the pressure has doubled.
By how much is the area reduced?

$$
\begin{aligned}
& \text { Initial pressure }=\frac{x}{15} \mathrm{~N} / \mathrm{cm}^{2} \\
& \text { Later pressure }=1.2 x \quad \mathrm{~N} / \mathrm{cm}^{2}=2 \times \text { initial pressie } \\
& \text { new area } \\
& \times 0.6 \\
& \Rightarrow \frac{1.2 x}{\text { new ore }}=\frac{2 x}{15}
\end{aligned}
$$

So new area $=9 \mathrm{~cm}^{2}$ ie. a reduction of $6 \mathrm{~cm}^{2}$

Question 9
List all the integer solutions of $x^{2}<6 x+27$

$$
\begin{aligned}
& x^{2}<6 x+27 \\
\Rightarrow & x^{2}-6 x-27<0 \\
\Rightarrow & -3<x<9
\end{aligned}
$$

The integer solutions are

$$
-2,-1,0,1,2,3,4,5,6,7,8
$$

|  | $U B$ | $L B$ |
| :---: | :---: | :---: |
| $p$ | 0.305 | 0.295 |
| $q$ | 1.25 | 1.15 |

Upper bound for $q-p$
= upper bound for $q$ - lower bound for $p$

$$
=1.25-0.295
$$

$$
=0.955
$$

Lower bound for $q-p$

$$
\begin{aligned}
& =\text { lower bound for } q-\text { upper bound for } p \\
& =1.15-0.305 \\
& =0.845
\end{aligned}
$$

Error interval $0.845<q-p<0.955$

## Question 11

The diagram shows a circle, with centre $O$, and points $A, B$, and $C$ marked on the circumference.


Given that angle $A C B=53^{\circ}$, calculate the size of angle $O A B$.
$\angle A O B=106^{\circ}$ (angle at centre is the angle at the circumference)

Triangle $A O B$ is isosceles, since $O A=O B$ (radii)
So $\angle O A B=\frac{180-106}{2}=37^{\circ}$

Question 12
George buys a new car. The car's value decreases by a fixed percentage each year.
After 3 years, the car is worth $£ 14,580$, and after after 5 years, it is worth $£ 11,809.80$
Work out the value of the car two years after George bought it.


$$
\begin{aligned}
r^{2}=\frac{11809.80}{14580} \Rightarrow r & =\sqrt{\frac{11809.80}{14580}} \\
& =0.9 \\
\text { Year 2 value }=\frac{\text { Year } 3 \text { value }}{r} & =\frac{14580}{0.9} \\
& =£ 16200
\end{aligned}
$$

Question 13
On the grid, sketch the graph of $y=\cos x^{\circ}+1$ for $-360^{\circ} \leq x \leq 360^{\circ}$


Question 14
A hemisphere of radius 10 cm and a cone are attached to form a solid. The circular base of the cone perfectly fits onto the circular face of the hemisphere. The solid has a volume of $1200 \pi \mathrm{~cm}^{3}$.

Find $l$, the slant height of the cone.
Round your answer to 3 significant figures.


$$
\begin{aligned}
& \text { Volume of hemisphere }=\frac{2}{3} \pi r^{3}=\frac{2000 \pi}{3} \mathrm{~cm}^{3} \\
& \text { Volume of cone }=\frac{1}{3} \pi r^{2} h=\frac{100 \pi h}{3} \mathrm{~cm}^{3} \\
& \text { So } \frac{2000 \pi}{3}+\frac{100 \pi h}{3}=1200 \pi \\
& \Rightarrow 2000+100 \mathrm{~h}=3600 \\
& \Rightarrow \quad 100 \mathrm{~h}=1600 \\
& \Rightarrow \quad h=16 \mathrm{~cm} \\
& \text { Using Pythagoras, } l=\sqrt{10^{2}+16^{2}} \\
& =18.9 \mathrm{~cm} \text { to } 3 \mathrm{sf} .
\end{aligned}
$$

## Question 15

A laptop costs $£ 1249$ in the UK and $€ 1399$ in Europe. The laptop costs $\$ 1648.90$ in the United States.

You are given the following exchange rates:

$$
\$ 1=£ 0.75 \text { and } \$ 1=€ 0.84
$$

In which location is the laptop cheapest?
uK

$$
\begin{aligned}
& \frac{E}{} \underset{0.75 \underset{\sim 0.75}{\longrightarrow}}{ } 1 \\
& 1249 \underset{\sim 0.75}{\longrightarrow} 1665.33
\end{aligned}
$$

## Europe


$1399 \underset{\div 0.84}{\longrightarrow} 1665.47$

Question 16
$A B C D$ is a quadrilateral.


Find the value of $x$.
Find BD

$$
\begin{aligned}
\frac{B D}{\sin (120)}=\frac{6.3}{\sin (33)} \Rightarrow B D & =\frac{6.3 \sin (120)}{\sin (33)} \\
& =10.01 \ldots \mathrm{~cm}
\end{aligned}
$$

Find $x$

## Question 17

$\varepsilon=\{$ prime numbers between 1 and 40$\}$
$A=\{2,7,17\}$
$B=\{2,5,17,37\}$
$C=\{3,13,23,31,37\}$
(a) Complete the Venn digram for this information.

(b) A number is chosen at random from $\varepsilon$. Find the probability that the number is a member of $B \cup C$.

$$
\frac{8}{12}=\frac{2}{3}
$$

Question 18
A group of Year 10 students sit a test. The lowest mark achieved is 22 . The median mark achieved is 50 . The range in marks is 54 . The upper quartile 68 and the interquartile range was 38 .
(a) Draw a box plot showing this information.

(b) This box plot shows the marks achieved by Year 11 students on the same test.

For these Os:

(1) Compare an averagein this case, the median

(2) Compare a measwe of spread either the range or the $1 Q R$
Compare the distribution of marks obtained by Year 10 with the distribution of marks obtained by Year 11.
The median mark in YII was higher than the median in YIO.
The range and interquartile range of marks was greater in 410 then $Y 11$. You dort need to mention both. You can of spread.

Question 19
$\mathrm{f}(x)=\frac{x+3}{7}$ and $\mathrm{g}(x)=p x+5$ where $p$ is a constant.
Given that $\mathrm{g}(3)=11$, find an expression for $\mathrm{f}^{-1} \mathrm{~g}(x)$
Find $p$

$$
\begin{aligned}
& g(3)=3 p+5=11 \\
& \Rightarrow \quad p=\frac{11-5}{3}=2 \text { so } g(x)=2 x+5
\end{aligned}
$$

Find $f^{-1}(x)$

$$
\begin{aligned}
f(x)=\frac{x+3}{7} & \Rightarrow f\left(f^{-1}(x)\right)=\frac{f^{-1}(x)+3}{7} \\
& \Rightarrow x=\frac{f^{-1}(x)+3}{7} \\
& \Rightarrow 7 x-3=f^{-1}(x)
\end{aligned}
$$

Find $f^{-1}(g(x))$

$$
\begin{aligned}
& f^{-1}(x)=7 x-3 \\
& \text { so } f^{-1}(g(x))=7 g(x)-3=7(2 x+5)-3 \\
&=14 x+35-3 \\
&=14 x+32
\end{aligned}
$$

Question 20
Lucy estimated the number of rooks in a colony as follows:
First she caught 80 rooks and attached a ring to one of the legs of each rook.
She then released them back into the colony.
After they had enough time to mix, Lucy caught 55 rooks. Some of these rooks were birds that she had previously attached rings to. Lucy used this information to estimate that there were 440 rooks in the colony.

Of the 55 rooks she caught, how many had rings attached?
Based on her estimate, she captwed $\frac{80}{440}=\frac{2}{11}$ of the rooks initially.

To have come up with her estimate, she should have found the same fraction of the recaptured rooks to have rings attached to them.

$$
\frac{2}{11} \text { of } 55=10 \text { of the } 55 \text { rooks already }
$$ had rings attached.

