OCR Paper 5H Practice Booklet
22 practice questions based on the advance information
Copies of this booklet, as well as hints \& solutions, are available at bossmaths.com/advanceinfo

Question 1
(a) Work out $\frac{0.72+0.6}{0.3}$, writing your answer as a decimal.

$$
=\frac{1.32}{0.3}=\frac{13.2}{3}=\ldots
$$

(b) Work out $\frac{9}{7}-\left(4 \times \frac{3}{14}\right)$ writing your answer as a fraction. How many fourteenths do you have if you have fou lots of three fowteenths?

$$
=\frac{9}{7}-\frac{}{14}
$$

Question 2
Work out $9.5 \times 10^{8}+60,200,000$, writing your answer in standard form.

$$
\begin{aligned}
& 9.5 \times 10^{8}+6.02 \times 10^{7} \\
= & 9.5 \times 10^{8}+0.602 \times 10^{8} \\
= & \ldots
\end{aligned}
$$

Question 3

The town of Bridgham is a distance of 12 km from Aston, on a bearing of 080° from Aston. Charlton is 9 km south of Aston.

Using a scale of $1: 100,000$, draw a scale diagram showing the locations of Aston, Bridgham and Charlton.

Use your scale diagram to then find the real-world straight-line distance between Bridgham and Charlton correct to the nearest 0.1 km .
I unit : 100,000 units
$1 \mathrm{~cm}: 100,000 \mathrm{~cm}$
$1 \mathrm{~cm}: 1000 \mathrm{~m}$
Aston

Question 4
Simplify each of these expressions as far as possible.

$$
\sqrt{a b}=\sqrt{a} \sqrt{b}
$$

(a) $5 \sqrt{44}-8 \sqrt{11}=5 \sqrt{4} \sqrt{11}-8 \sqrt{11}$
(b) $\sqrt{34} \times \sqrt{17}=\sqrt{2} \times \sqrt{17} \times \sqrt{17}=\sqrt{2} \times(\sqrt{17} \times \sqrt{17})$

Expand and simplify each of these expressions as far as possible.
(c) $-7 x-3(9-2 x) \equiv-7 x+-3(9-2 x)$

$$
\equiv \quad \ldots
$$

(d) $(x-3)(x+10)(x+3)$

Expand one pair of binomials first.
Then multiply your expanded expression by the third binomial.

Question 5

(e) Here are five powers of 17:
17^{1}
17^{20}
17^{60}
17^{80}
17^{93}

Fill in each blank using one of the above powers of 17 :
\qquad is prime.
\qquad is both a square and a cube number.
Note that since $17^{20}=\left(17^{10}\right)^{2}$, 17^{20} must be a square number.
\qquad is a cube number but not a square number.
(b) Here are six numbers:
5^{4}
4^{5}
$4^{\frac{1}{5}}$
$(-4)^{5}$
4^{-5}
$\frac{5}{4}$

Fill in each blank using one of the above six numbers.
If you multiply a number by its reciprocal, you get 1 .
\qquad and \qquad sum to 0 .
(c) Circle the number that is both a multiple of 8 and a factor of 8 .
1
2
4
8
16
(d) Write $\frac{3}{8}$ as a decimal.

Method 1

Method 2

$$
\begin{aligned}
& \frac{1}{4}=0.250 \\
& \frac{1}{8}=0.125 \text { so } \frac{3}{8}=\ldots
\end{aligned}
$$

Question 6

Work out $\left(8 \times 10^{15}\right)^{-\frac{2}{3}}$, writing your answer in standard form. $\quad a^{-\frac{2}{3}}=\frac{1}{(\sqrt[3]{a})^{2}}$

Question 7

By writing each number correct to 1 significant figure, find an estimate for this calculation.

$$
\frac{8.03 \times 5.92}{2.97}
$$

Question 8

(a) Simplify the ratio $16: 80: 48$ as far as possible
(b) Rami, Same, and Tanya share some sweets in the ratio $33: 70: 28$

Same then gives 10% of his sweets to Tanya.
Fill in the blank:
Tanya has \qquad .$\%$ more sweets than she did before Sami gave her some of his sweets.

$$
10 \% \text { of } 70=7
$$

$$
\text { What is } 7 \text { as a fraction of 28? }
$$

(c) After receiving 10% of Sami's sweets, Tanya decides to give a fraction of her sweets to Rami so that she and Rami have an equal number of sweets.
What fraction of her sweets does she need to give to Rami?

Question 9

p is inversely proportional to q. When $p=14.5, q=2$. Find the value of q when $p=580$.
\rightarrow This means $p q$ is constant.
In this case $p q$ will always be $14.5 \times 2=29$.
To find q when $p=580$, substitute $p=580$ into $\rho q=29$ and solve.

Question 10
(a) Write 0.103 as fraction in its simplest form.

Let $x=0.1030303 \ldots$
Then $100 x=10.3030303 \ldots$
Subtract $x=0.1030303 \ldots$
to get $99 x=$
(b) A bag contains 330 sweets. The probability of picking an orange sweet from this bag is $0.1 \dot{0} \dot{3}$. How many orange sweets are in the bag?

Question 11

The graph shows the distance covered by a cyclist for 6 seconds.

(a) Estimate the speed of the cyclist at the moment she had travelled 5 metres.

(b) Here are four sketches of speed-time graphs. Circle the sketch that represents the cyclist's speed during the six-second period shown above.

Question 12

The diagram shows two rectangles. The lengths and widths of each rectangle, in cm , are given.

The two rectangles have the same area. Find the value of x.

$$
(x-1)(x+1)=(3 x-5)(x-4)
$$

Solve this equation.

Question 13

$\varepsilon=\{$ prime numbers between 1 and 40$\}$
$A=\{2,7,17\}$
$B=\{2,5,17,37\}$
$C=\{3,13,23,31,37\}$
(a) Complete the Venn digram for this information.

(b) A number is chosen at random from ε. Find the probability that the number is a member of B given that it is a member of $A \cup C$.

Question 14
This triangle has area $\sqrt{k} \mathrm{~cm}^{2}$. Find the value of k.

Question 15

This table shows the number of babies born in a town each day during a week.

Day	Mon	Tue	Wed	Thu	Fri	Sat	Sun
Number of births	32	9	41	63	50	38	45

Draw a time series graph to show this information.

Question 16

This table shows the total sales made in a clothes shop during each season. Complete the table and construct a pie to show this information.

Question 17

$O A D$ and $O B C$ are sectors of circles with centre O.
The points O, A, and B lie on a straight line. Similarly, the points O, D, and C lie on a straight line.
$O B$ has length 13 cm and $O D$ has length 12 cm .

Find, in terms of π, the perimeter of the shaded region $A B C D$.

$$
A B=C D=1 \mathrm{~cm}
$$

Arc $A D=\frac{72}{360} \times 2 \pi \times 12=\ldots \ldots \mathrm{cm}$
Arc $B C=$

Perimeter $=$

Question 18

(a) A freight train is travelling at $5 \mathrm{~m} / \mathrm{s}$. Find the speed of the train in km / h.

$$
5 \mathrm{~m} / \mathrm{s}=5 \times 60 \times 60 \mathrm{~m} / \mathrm{h}
$$

(b) Rearrange $v^{2}=u^{2}+2$ as to make a the subject.

(1) Subtract u^{2} from both sides
 (2) Divide both sides by 2 s

(c) The train accelerates uniformly from an initial speed of $5 \mathrm{~m} / \mathrm{s}$ to a final speed of $9 \mathrm{~m} / \mathrm{s}$. The train travels 70 metres during this acceleration.
Calculate the acceleration of the train in $\mathrm{m} / \mathrm{s}^{2}$.

$$
u=5 \quad v=9 \quad s=70
$$

Question 19

The region R contains the set of points within triangle $A B C$ that are closer to A than B and closer to $B C$ than $A B$.
(1) Perpendicular bisector of $A B$
(2) Angle bisector of $\angle A B C$

Question 20
(a) Find the equation of the circle with centre $(0,0)$ that passes through the point $(7,3)$.

$$
x^{2}+y^{2}=r^{2}
$$

Substitute $x=7, y=3$ in to find r^{2}

(b) Find the equation of the tangent to the circle at A, giving your answer in the form $y=m x+c$ The tangent is perpericicular to the radius at $(7, \beta)$ The radius has gradient \square

- Use this to find the gradient of the tangent.
- From here, there are a couple of ways to complete the question.

Question 21

Use the formula $u_{n+1}=\frac{\left(u_{n}\right)^{3}-1}{10}$ with $u_{1}=-1$ to calculate u_{2}.

$$
u_{2}=\frac{\left(u_{1}\right)^{3}-1}{10}=\frac{(-1)^{3}-1}{10}=\ldots
$$

Question 22

(a) Rotate shape P by 180° about $(1,2)$. Label this rotated shape Q.
(b) Reflect shape Q in the line $x=1$. Label this reflected shape R.
(c) Describe fully the single transformation that maps shape P onto R.

