OCR Paper 6H Practice Booklet
22 practice questions based on the advance information
Copies of this booklet, as well as hints \& solutions, are available at bossmaths.com/advanceinfo

Question 1
Given that $\frac{\left(x^{-3}\right)^{5}}{x^{-7}} \times \frac{x^{-\frac{1}{2}}}{x} \equiv x^{m}$, find the value of m.

$$
\begin{aligned}
\frac{\left(x^{-3}\right)^{5}}{x^{-7}} \times \frac{x^{-\frac{1}{2}}}{x} & =\frac{x^{-15}}{x^{-7}} \times \frac{x^{-\frac{1}{2}}}{x^{1}}=x^{-8} \times x^{-\frac{3}{2}}=x^{-\frac{19}{2}} \\
M & =-\frac{19}{2}
\end{aligned}
$$

Question 2
(a) Circle the cube number:

$$
9260
$$

(b) A pudding recipe for 4 people requires 120 grams of butter. Calculate the amount of butter needed to make the pudding for 12 people.

Question 3
The value of some machinery decreases by a fixed 4.5% every year.
Ten years after its construction, the machinery had a value of $£ 820.31$.
What was the value of the machinery 7 years after its construction?
Annual multiplier $=0.955$
7 years after construction is 3 years before it is 10 years old.

Value after 7 years $=\frac{E 820.31}{0.955^{3}}=941.82$
Question 4
(a) Factorise $16 x^{2}-9$

$$
(4 x+3)(4 x-3)
$$

(b) Expand and simplify $t(7 t-4)-5(7 t-4)+t(4-7 t)+3(7 t-4)$

$$
\begin{aligned}
& \equiv t(7 t-4)-5(7 t-4)-t(7 t-4)+3(7 t-4) \\
& \equiv(t-5-t+3)(7 t-4) \\
& \equiv-2(7 t-4) \\
& \equiv-14 t+8
\end{aligned}
$$

Question 5
Roberto is x years old.
Diogo is 5 years younger than Roberto. $x-5$
Mohamed is 4 years older than Diego. $x-1$
(a) Write an expression, in terms of x, for the sum of the ages, in years, of Roberto, Diogo, and Mohamed.

$$
x+x-5+x-1=3 x-6
$$

Moacir is 54 years older than Roberto. $x+54$
Moacir's age is equal to the sum of the ages of Roberto, Diogo, and Mohamed.
(b) Find Diogo's age.

$$
\begin{aligned}
3 x-6 & =x+54 \\
\Rightarrow 2 x & =60 \\
\Rightarrow x & =30 \\
\Rightarrow x-5 & =25 \\
& \text { Diego is }
\end{aligned}
$$

Question 6

(a) Write down the three inequalities that define the shaded region.

(b) x and y are integers. On the diagram, mark with a cross each of the three points that satisfy the three inequalities you wrote down in part (a).

Question 7
(1) The highest common factor of m and n is 21 .
(2) The lowest common multiple of m and n is 126 .
(3) m is an even number less than 50 .

Find the values of m and n.
(1) m and n are multiples of 21
(2) m and n are factors of 126

So m and n could be $21,42,63,126$.
$M=42$ because (3)
$n=63$ because it is the only one of the four possible numbers that gives the correct HCF and LCM.
Question 8
The circumference of a circle is 80 cm .
Calculate the area of the circle, correct to 3 significant figures.

$$
\begin{aligned}
C=2 \pi r & \Rightarrow 80=2 \pi r \\
& \Rightarrow r=\frac{80}{2 \pi}=\frac{40}{\pi} \\
A=\pi r^{2} & =\pi \times\left(\frac{40}{\pi}\right)^{2}=509 \mathrm{~cm}^{2} \text { to 3sf }
\end{aligned}
$$

Question 9
The diagram shows a trapezium $A B C D$ and one of its diagonals, $B D$.

DIAGRAM NOT DRAWN ACCURATELY

Find the area of this trapezium.

$$
\begin{aligned}
\angle B C D & =\cos ^{-1}\left(\frac{18^{2}+15^{2}-15^{2}}{2 \times 18 \times 15}\right) \\
& =53.1 \ldots
\end{aligned}
$$

$$
h=15 \sin (53.1 \ldots)=12 \mathrm{~cm}
$$

$$
\begin{aligned}
& \text { Area of trapezium }=\frac{1}{2} h(a+b) \\
& =\frac{1}{2} \times 12 \times(4+18)=132 \mathrm{~cm}^{2}
\end{aligned}
$$

Question 10

This cumulative frequency graph shows information about the heights, in cm , of rowers at a rowing club.

A rower is selected at random from the club. Estimate the probability that this rower is more than 186 cm tall.
80 rower in total

$$
80-54=26 \text { over } 186 \mathrm{~cm}
$$

$$
\text { Probability }=\frac{26}{80}=0.325
$$

Question 11
y is directly proportional to \sqrt{x}.
When $x=4 \times 10^{40}, y=15$.
Find the value of y when $x=9 \times 10^{26}$. Write your answer in standard form.

When $x=9 \times 10^{26}, y=2.25 \times 10^{-6}$

Question 12
At the start of an experiment, the mass of the bacteria in a peri dish is 1.35 g . The mass of the bacteria increases by 5.8% every hour. A scientist notes the mass of the bacteria every hour.
After n hours, the scientist recorded a mass of 2.00 grams. Find the value of n.
On a calculator, type 1.35×1.058 and press $=$ This gives the mass after I how. It is less than 2.00 grams.
Now hit ANS $\times 1.058$ and repeatedly press \Rightarrow until the mass reaches 2.00 grans.

Keep court of how many times you press \Rightarrow altogether to find $n=7$

Question 13
Write $x^{2}+10 x-19$ in the form $(x+a)^{2}+b$

$$
(x+5)^{2}-6
$$

Question 14

On the grid, sketch the graph of $y=\cos x^{\circ}+1$ for $-360^{\circ} \leq x \leq 360^{\circ}$

Question 15

The chemical element gallium has a density of $5.91 \mathrm{~g} / \mathrm{cm}^{3}$.
Convert this density into $\mathrm{kg} / \mathrm{m}^{3}$.

$$
\begin{aligned}
& 5.91 \mathrm{~g} / \mathrm{cm}^{3} \\
& =5,910,000 \mathrm{~g} / \mathrm{m}^{3} \\
& =590 \text { because } 1 \mathrm{~m}^{3}=1000000 \mathrm{~cm}^{3} \\
& =5910 \mathrm{~kg} / \mathrm{m}^{3} \\
& \text { because } 1 \mathrm{~kg}=1000 \mathrm{~g}
\end{aligned}
$$

Question 16
The diagram shows a triangular prism.
The triangular faces of this prism are equilateral triangles.

A rectangular face of the triangular prism is then glued to a congruent face of a cuboid measuring $12 \mathrm{~cm} \times 12 \mathrm{~cm} \times 20 \mathrm{~cm}$.

Once glued, the resulting solid is a pentagonal prism.

Work out the surface area of this pentagonal prism. Round your answer to 3 significant figures.

- Each rectangular face is a

$$
20 \times 12=240 \mathrm{~cm}^{2}
$$ rectangle.

- Each pentagonal face is mate up of a
$12 \times 12=144 \mathrm{~cm}^{2}$ square and a
$\frac{1}{2} \times 12 \times 12 \times \sin (60)=62.35 \ldots \mathrm{~cm}^{2}$ triangle.
Total $S A=5 \times 240+2 \times(144+62.35 \ldots)$

$$
=1612.7 \ldots=1610 \mathrm{~cm}^{2} \text { bo sf. }
$$

Question 17
Show that these triangles are congruent.

The third angle in the first triangle is $180-(40+45)=95^{\circ}$ The two triangles are congruent because of the ASA criterion: $95^{\circ}, 11 \mathrm{~cm}, 40^{\circ}$

Question 18
P and Q are two mathematically similar pyramids.
Q has a surface area of $90 \mathrm{~cm}^{2}$ and a volume of $54 \mathrm{~cm}^{3}$.
P has a surface area of $40 \mathrm{~cm}^{2}$. Find the volume of P.

$$
\begin{aligned}
& Q \rightarrow P \\
& \text { Area scale factor }=\frac{40}{90}=\frac{4}{9} \\
& \text { Length scale factor }=\sqrt{\frac{4}{9}}=\frac{2}{3} \\
& \text { Volume scale factor }=\left(\frac{2}{3}\right)^{3}=\frac{8}{27} \\
& \therefore \text { Volume of } P=54 \times \frac{8}{27}=16 \mathrm{~cm}^{3}
\end{aligned}
$$

Question 19
Solve $x+4=\frac{10}{x}$
Round your solutions to 3 decimal places.

$$
x+4=\frac{10}{x}
$$

Multiply both sides by x

$$
\begin{array}{cc}
x^{2}+4 x= & 10 \\
-10 & -10 \\
x^{2}+4 x-10=0
\end{array}
$$

Using a calculator, we get

$$
x=1.742, \quad x=-5.742
$$

Question 20
(a) Make p the subject of the formula $m=\frac{8(q+3 p)}{p}$

Multiply both sides by p

$$
m p=8 q+24 p
$$

$$
\begin{aligned}
& m p-24 p=8 q \\
& p(m-24)=8 q
\end{aligned}
$$

Factorise out p

Divide both sides by $(m-24)$

$$
p=\frac{8 q}{m-24}
$$

(b) Work out the value of p when $q=0.34$ and $m=0.7$

$$
\rho=\frac{8 \times 0.34}{0.7-24}=-\frac{136}{1165}
$$

Question 21

Sony plays a game which involves picking numbered cards.
The first bag contains four cards, numbered from 1 to 3 .
The second bag contains six cards, numbered from 1 to 5 .
Sony picks one card at random from each bag and multiplies the numbers on his two cards.
(a) Draw a sample space to show all the possible outcomes.

Bag 2

Players win a prize if the product of the numbers on their cards is even.
(b) Given that Jonny wins a prize, find the probability that the product of his two numbers is greater than 9 .

Question 22

(a) Complete the table of values for $y=x^{2}-5$

x	-2	-1	0	1	2	3
y	-1	-4	-5	-4	-1	4

(b) On the grid, draw the graph of $y=x^{2}-5$ for values of x from -2 to 3 .

(c) Write down the coordinates of the turning point of the graph. $(0,-5)$

